#### Diagnosis and Management of Achalasia: Past, Present, & Future

Kyle A. Perry, MD, FACS
Assistant Professor of Surgery
Division of General & Gastrointestinal Surgery
The Ohio State University Wexner Medical Center

#### **Achalasia**

- Motor disorder of esophagus Aperistalsis
   Impaired LES relaxation
- Causes dysphagia, pain, regurgitation
- Leads to weight loss, pulmonary complications
- Increased risk of esophageal CA

# **Epidemiology**

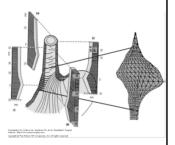
- Prevalence 7.9-12.6/ 100,000
- Incidence 0.4-1.1/ 100,000
- Mean age at diagnosis 30 to 60 years
- Peak age in 40's

#### **Cancer Risk**

- Achalasia series report 0-33% increased risk of esophageal CA (mostly SCCA)
- Swedish population-based study of 1062 achalasia patients with 9864 pt-years f/u
   →16-fold increased risk of esoph CA
- Surveillance not recommended would require >400 endoscopies to find one cancer

# **Historical Perspective**




# **Historical Perspective**



1674 Sir Thomas Willis (England) -- Successful treatment of "cardiospasm" with serial esophageal dilation using a sponge attached to a whale bone (baleen)

# **Lower Esophageal Sphincter**

- High pressure zone 2 to 4 cm long at GEJ
- Parasympathetic and sympathetic innervation mostly in myenteric plexus
- Provides barrier to reflux of gastric juice



# **Pathophysiology of Achalasia**

- Dysfunction of myenteric plexus
   Early: lymphocytic inflammation
   Late: loss of ganglion cells
- Selective loss of inhibitory neurons (VIP/NO)
- Sparing of stimulatory cholinergic innervation
- Failure of LES to relax with swallow

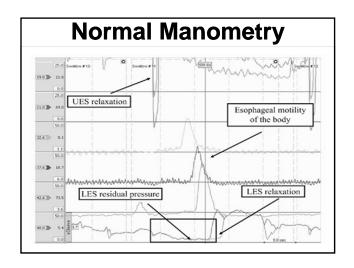
## **Clinical Presentation**

- Progressive solid food dysphagia (variable for liquids)
- Chest pain more frequent early
   →decreases with progressive
   dilation Regurgitation of undigested,
   nonbilious food (esp. at night)
- Heartburn not relieved with acid suppression

#### **Clinical Features**

- Eating maneuvers augment food passage
  - Head back, upright posture, valsalva Warm, carbonated/alcoholic beverages
- Food fermentation → acidification with esophageal ulceration/ heartburn
- Pulmonary complications -- aspiration
- Weight loss up to 84% of patients

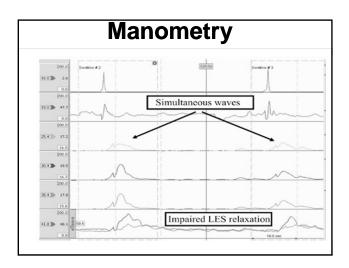
# **Differential Diagnosis**

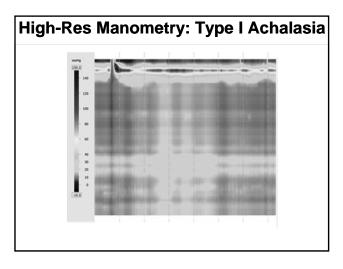

- Pseudoachalasia
   Over 50% 2º to GEJ/cardia tumor
   Other causes: pseudocysts, GEJ obstruction after hiatal surgery, paraneoplastic syndromes
- Scleroderma
   Aperistalsis with low LES pressure
- Neurologic disorders (Parkinson's)
- · Chagas' Disease

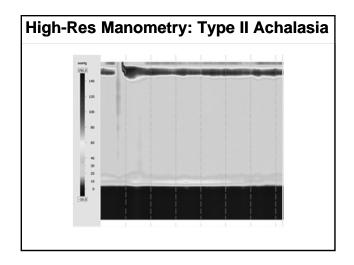
#### **Evaluation**

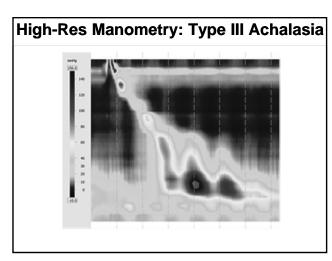
- Manometry
- Barium esophagogram
- EGD
- +/- pH study

# **Esophageal Manometry**


- Used to assess esophageal motility and LES function (pressure, length, relaxation)
- Multichannel water-perfused or solid state catheter connected to pressure transducers
- Records pressure at various points along the esophagus during bolus swallow





# Normal High-Res Manometry UES relaxation Motility of the body LES residual pressure LES relaxation Res Manometry LES relaxation Res Manometry


# **Manometry in Achalasia**

- Aperistalsis of body
- Incomplete relaxation of LES
- Normal to elevated LESP
- Simultaneous low amplitude contractions









# **Barium Swallow**

- Dilated, possibly tortuous esophagus (late finding)
- "Bird's beak" tapered appearance of distal esophagus
- Air fluid level with retained food



## **Endoscopy**

- Necessary to rule out malignancy
- · Requires retroflexed view of cardia/GEJ
- Scope should pass through easily if not, consider malignancy
- EUS may help to evaluate esophageal wall when CA suspected

# pH Study

- May help when diagnosis is in question, especially when heartburn is major sx
- Interpretation may be difficult due to fermentation
- Achalasia shows gradual decline in pH vs. rapid drop seen with GERD

# **Management**

- Pharmocologic
- Botox injection
- Pneumatic dilation
- Surgical myotomy
  - Laparoscopic
  - Endoscopic
- Esophagectomy

# **Pharmacologic Therapy**

- Goal decrease LES pressure to allow esophagus to empty
- Nitrates use limited by side effects
- Nifedipine reduces LESP but minimal improvement in symptoms vs. placebo in 2 out of 3 RCT's
- Reserved for mild disease or patients unable to tolerate dilation/surgery

#### **Botulinum Toxin**

- Intrasphincteric injection of LES
- Blocks release of acetylcholine at neuromuscular junction
- 70-100% effective at 1 month
- Ease of administration and low rate of adverse effects contribute to popularity
- Most benefit seen in elderly, debilitated patients

#### **Botulinum Toxin – The Downside**

- Usually requires repeat injection at 6 to 9 months – 30% remission at 1 year
- Response to repeat injections limited by antibody formation
- Reported to increase scarring of distal esophagus, increasing difficulty of surgery
- Long term results inferior to dilation in several RCT's

# **Treatment Strategies**

- Medical Therapy (Nitrates, nifedipine)
- Botulinum Toxin
- Endoscopic pneumatic dilation
  - Advantages: Effective symptom relief, outpatient procedure
  - <u>Disadvantages</u>: Repeat dilations often needed, increased risk of esophageal perforation
- Laparoscopic Heller Myotomy
  - Advantages: durable symptom relief
  - Disadvantages: invasive surgical procedure

Campos, GM et al. Ann Surg 2009; 249:45-57

#### **Pneumatic Esophageal Dilation**

- 3-4 cm balloon rapidly inflated in distal esophagus under fluoro guidance
- Relies on rupture of LES fibers



#### **Pneumatic Esophageal Dilation**

- Trials with f/u > 2 years report good to excellent results in 65-80%
- Repeat dilation required in > 50%
- West et. al. reported on 125 patients
   12 year f/u → 50% remission with median 4 tx
   15 year f/u → 40% remission Am J Gastro 2002
- Improved results in older patients (over 40) and those with post-dilation LESP < 10</li>

# **Complications of Dilation**

- Perforation
   Most series report 0 to 4%
- Gastroesophageal reflux
   Symptomatic in 7-17% of cases

# Surgery vs. Dilation

- Dilation
  - · outpatient procedure
  - minimal pain
  - · Rapid return to work
  - May treat any patient population (frail, pregnant, ect...)
  - Less expensive
  - Does not preclude myotomy

- Myotomy
  - single procedure
  - dysphagia relief is longer at the cost of more heartburn
  - may be more effective treatment in younger patients

# Surgery vs. Dilation

- Over a two year horizon, the clinical success of pneumatic dilation and laparoscopic myotomy are comparable in a recent large European randomized trial.
- However, at 5 year follow-up, surgery is favored due to higher rate of recurrent dysphagia requiring retreatment with increased complications in patients undergoing endoscopic dilation.

# Diagnosis and Management of Achalasia: Past, Present, & Future

Jeffrey W. Hazey, MD, FACS
Associate Professor of Surgery
Center for Minimally Invasive Surgery
Division of General & Gastrointestinal Surgery
The Ohio State University Wexner Medical Center

# Surgical Therapy – Historical Perspective

- 1913 Heller: Anterior and posterior myotomy via abdominal approach
- 1918 Groeneveldt: Single anterior myotomy
- 1958 Ellis: Thoracic approach
- 1991 Cuschieri: Laparoscopic myotomy
- 1992 Pellegrini: Thoracosopic approach

## Surgery – Laparoscopic vs. Open

- Laparoscopic approach associated with significant reduction in
  - Length of stay
  - Post-operative narcotic use
  - Time to return to work
- Long term efficacy and LES pressure/ relaxation equivalent in retrospective comparison studies

#### Laparoscopic vs. Thoracoscopic

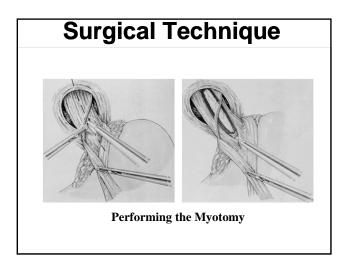
- Lap approach → better symptom relief and less reflux in 3 large retrospective series
- Thoracoscopic limited by need for single lung ventilation and postop chest tube
- Easier to extend myotomy onto cardia with laparoscopic approach
- Thoracic approach used for hostile abdomen or when need to extend myotomy higher onto esophagus

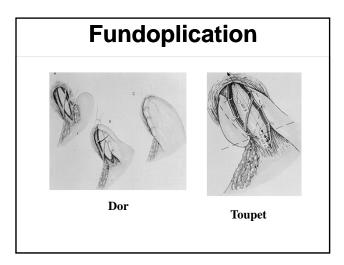
#### **Surgical Principles**

- Goal decrease LES pressure and improve esophageal emptying
- Transect longitudinal and circular fibers of esophagus, and sling fibers of cardia
- Myotomy should extend 1 to 2 cm on stomach and up to normal esoph muscle
- Cut edges of muscle should be widely separated to prevent reapproximation

#### **Addition of Antireflux Procedure**

- Prompted by reports of up to 40% reflux rate after thorascopic approach
- Partial fundoplication
   Anterior wrap (Dor)


   Posterior wrap (Toupet)
- No difference in rates of dysphagia or reflux b/w two procedures


# **Surgical Technique**





Dissection of Gastrohepatic Ligament and Crura





# **Complications of Surgery**

- Overall low morbidity
- Esophageal/ gastric mucosal perf (4-5%)
   Usually inconsequential when recognized at time of operation
- Other complications (3%)
   Pneumothorax, bleeding, abscess

|                                              | RHM (n=33)     | LHM (n=11)     | p-value |
|----------------------------------------------|----------------|----------------|---------|
| Follow-up Interval, median<br>(range), years | 9.1 (3.9-12.8) | 9.9 (4.4-14.8) | 0.49    |
| Dysphagia, No. (%)                           |                |                |         |
| Absent or mild                               | 26 (79)        | 8 (80)         | 1.00    |
| Moderate or severe                           | 7 (21)         | 2 (20)         |         |
| Heartburn, No. (%)                           |                |                |         |
| Absent or mild                               | 26 (79)        | 9 (90)         | 0.66    |
| Moderate or severe                           | 7 (21)         | 1 (10)         |         |
| PPI use, No (%)                              | 18 (56.3)      | 8 (80%)        | 0.27    |
| GERD-HRQL score, median<br>(range)           | 11 (0-36)      | 12 (6-20)      | 0.55    |
| Satisfied, No. (%)                           | 32 (95.5)      | 10 (90.9)      | 0.44    |
| Heller again, No. (%)                        | 30 (90.9)      | 10 (90.9)      | 1.00    |

| LHM: Long-Term Results |                   |                      |                                       |                 |                                    |                   |                  |
|------------------------|-------------------|----------------------|---------------------------------------|-----------------|------------------------------------|-------------------|------------------|
| Primary<br>Author      | Patients<br>(No.) | Follow-up<br>(years) | Absent or<br>Mild<br>Dysphagia<br>(%) | Retreatment (%) | Mild to<br>Mod<br>Heartburn<br>(%) | PPI<br>Use<br>(%) | Satisfaction (%) |
| Cowgill                | 47                | 10.6                 | 92                                    | 12.8            | NR                                 | NR                | 92               |
| Jeansonne              | 17                | 11.2                 | 94                                    | 17.7            | 23.5                               | NR                | 94               |
| Kilic                  | 46                | 6.4                  | 80                                    | 20              | NR                                 | NR                | NR               |
| Sasaki                 | 34                | 7.8                  | 100                                   | 5.9             | 0                                  | NR                | NR               |
| Zaninotto              | 177               | 10.0                 | 82                                    | 9.6             | NR                                 | NR                | NR               |
| Lamotto                | 1                 | 10.0                 | 02                                    | 0.0             | 1413                               | 1410              | 1111             |

#### **Per Oral Endoscopic Myotomy**

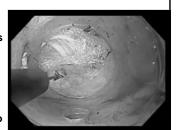
- Per Oral Endoscopic Myotomy (POEM)
  - Submucosal plane accessed via esophageal mucosotomy
  - Totally endoscopic procedure
  - Allows complete surgical myotomy under direct visualization
- Has the potential to offer the advantages of both surgical myotomy and endoscopic balloon dilation

#### **Per Oral Endoscopic Myotomy**

- Described by Inoue in 2009
- Surgical principles
  - Mucosal flap
  - · Submucosal dissection
  - Adequate distal myotomy
  - Secure closure of mucosotmy
- Supine position
- General anesthesia
- CO2 insufflation

noue H et al. Endoscopy. 2010;42:265-71.




# **POEM Technique**

- Inspect and washout esophagus/stomach
- Identify GE junction
- Inject mucosa at 12 o'clock position 13cm proximal to GE junction
- Mucosotomy should be at least 3cm proximal to start of myotomy
- Incise mucosa
- Use TT knife
- Enter submucosal space



# **POEM Technique**

- Submucosal dissection past 2cm on cardia
- GE junction usually narrows and then widens on gastric side
- The scope length can also be checked to approximate the GE junction
- Important to go back into the stomach lumen and look for the length of dissection
- Transillumination



# **POEM Technique**

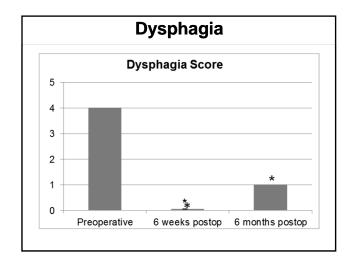
- Complete circular myotomy created using electrocautery
- Begin ~6cm above GEJ
  - At least 2cm distal to mucosotomy
- Extend 2cm onto the gastric cardia

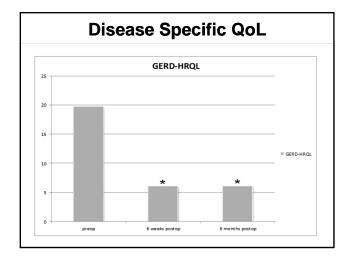


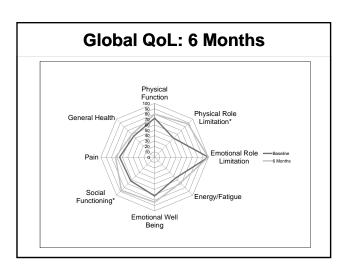
# **POEM Technique**

- Close mucosal incision with clips or suturing device
- Upper GI series POD #0 or 1
- Follow-up: 2 weeks, 6 weeks, 6 months, 1 year




## **POEM Outcomes**


- Between August 2012 and October 2013, 26 patients underwent POEM, 25 for achalasia and 1 long myotomy for diffuse esophageal spasm
  - Median age:54 years
  - Median BMI: 28.4 kg/m²
  - 14/26 (54%) male




#### **Operative Experience**

- · Successfully completed in all cases
- Mean operative time:  $105 \pm 30$  minutes
- Median of 7 (5-16) endoscopic clips were required for mucosotomy closure
- Pneumoperitoneum requiring Veress needle decompression occurred in 9 (35%) cases
- No intraoperative complications or esophageal leaks
- Median hospital stay: 1 (1-2) day







| Population: Preoperative Descriptors    |                  |                |      |  |
|-----------------------------------------|------------------|----------------|------|--|
| ·                                       | Heller<br>n = 64 | POEM<br>n = 37 | Р    |  |
| Age, mean (SD), yr                      | 57 (20)          | 56 (16)        | 0.7  |  |
| Female, %                               | 52               | 48             | 0.8  |  |
| Eckardt Score, mean (SD)                | 5.9 (2.4)        | 5.4 (2.2)      | 0.5  |  |
| Manometry, median (mm Hg)               |                  |                |      |  |
| Resting pressure                        | 37               | 41             | 0.2  |  |
| Relaxation pressure                     | 20               | 19             | 0.4  |  |
| Distal esophageal contraction amplitude | 32               | 29             | 0.9  |  |
| Symbol score >2, %                      |                  |                |      |  |
| Heartburn                               | 19               | 10             | 0.5  |  |
| Dysphagia to solid                      | 62               | 32             | 0.06 |  |
| Dysphagia to liquid                     | 49               | 30             | 0.4  |  |
| Reflux                                  | 45               | 17             | 0.01 |  |
| Chest pain                              | 23               | 13             | 0.6  |  |

| Operative Details              |                  |                |        |  |
|--------------------------------|------------------|----------------|--------|--|
|                                | Heller<br>n = 64 | POEM<br>n = 37 | Р      |  |
| Operative time, min            |                  |                |        |  |
| Median                         | 160              | 120            | 0.003  |  |
| Range                          | 100-280          | 60-215         |        |  |
| Full-thicknesss injury, n      |                  |                |        |  |
| Esophagus                      | 8                | 4              | 0.1    |  |
| Stomach                        | 3                | 0              | 0.8    |  |
| Return to the OR, n            |                  |                |        |  |
| Bleeding                       | 1                | 1              |        |  |
| Length of stay, mean days (SD) | 2.5 (1.9)        | 1.1 (0.6)      | <0.000 |  |
| OR indicates operating room.   |                  |                |        |  |

| Long-Term pH Testing              |                        |                      |     |  |
|-----------------------------------|------------------------|----------------------|-----|--|
|                                   | Heller<br>n = 31 (48%) | POEM<br>n = 23 (76%) | Р   |  |
| DeMeester score, median           | 2                      | 4                    | 0.2 |  |
| DeMeester score ≥14.7,%           | 10                     | 9                    | 0.4 |  |
| Number of reflux episodes, median | 4                      | 12                   | 0.4 |  |
| Testing >6 mo after surgery       |                        |                      |     |  |
|                                   |                        |                      |     |  |
|                                   |                        |                      |     |  |
|                                   |                        |                      |     |  |

#### **POEM vs. LHM: Conclusions**

- POEM is less invasive than LHM and enhances recovery with decreased pain, shorter length of hospital stay, and faster return to work
- Similar efficacy and postoperative reflux compared to LHM at 1 year

#### **POEM Outcomes**

- 18 patients with 1 year follow-up
  - 3 intraoperative perforations managed with clips
  - Durable dysphagia relief at 11 months in all patients
  - 46% had positive pH study at 6 months

Swanstrom, et al. Ann Surg 2012

#### POEM: What's next?

- Procedure has proven safe and effective in the short-term
- → Comparison of outcomes with pneumatic dilation and laparoscopic myotomy (dysphagia relief and reflux)
- → Long-term studies to assess durability and cost-effectiveness

#### **Persistent or Recurrent Dysphagia**

- Seen in 8 to 13%
- DDX includes incomplete myotomy, CA, stricture from reflux, severe dysmotility
- Evaluation similar to achalasia workup
- Treatment may include dilation or repeat myotomy (70-80% successful)

#### **Esophagectomy**

- Required in 1 to 2% of cases
- Indications: tortuous megaesophagus, failure of myotomy, stricture from reflux
- Orringer et. al. reported on 93 patients 10% leak rate/ 2% mortality 50% required dilation of anastomosis 95% eating well

#### **Summary**

- Rare disorder of esophageal motility
- Progressive and debilitating
- Treatment aimed at reducing LES pressure and improving esophageal clearance
- Myotomy and dilation most effective trx
- Laparoscopic approach favored, endoscopic emerging
- Addition of antireflux procedure controversial
- Esophagectomy rarely required